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Abstract - The paper deals with the factorized version of the
Kalman filtering. The global aim of research is to make possible to
estimate the entries of the state vector individually and thereby to
approach to handling the mixed-typed states, which still remains
the open problem. The present paper continues a sequence of re-
search in the field of factorized filtering and demonstrates its use
with the urban traffic system model, which is the main application
area. Two illustrative examples are presented.
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I. INTRODUCTION

The paper deals with the factorized version of Kalman
filtering [1] and describes its application to traffic control.
The traffic situation in the cities, along with a permanently
growing number of cars and, at the same time, the queues
at the intersections, has been a motivation for the presented
work. The people have to waste their time at queues on the
intersections, not to mention ecology. The situation is much
worse in historical cities, where extension of traffic network
is expensive and often impossible. One of the steps towards
improving the situation might be the use of means of mod-
ern feedback control with a queue length, taken as the main
controlled variable. The length of the queue expresses a
state of the transport network most adequately, but it is not
directly observable and has to be estimated. The estimation
of the individual state vector entries (factors), which the
factorized version of filtering brings, is believed to enable
approaching to the global aim of the research – handling the
mixed-type states, for the time remaining the open problem.

The present paper continues a sequence of the research
works, devoted to the factorized state estimation. The paper
[2] was concerned with the entry-wise organized filtering
under Bayesian methodology [3] and proposed the recur-
sive algorithm. But it required a special, reduced, form of
the state-space model, which caused excessive restrictions.
The work [4] proposed the solution of factorized Bayesian
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prediction and filtering, based on applying the chain rule to
the state-space model, without such a restriction. Bayesian
filtering with Gaussian state-space model, Gaussian prior
distribution of the initial state and Gaussian observations
provides Kalman filter. The work [5] described the prob-
lem of the factorized Kalman filtering with Gaussian mo-
dels and offered the solution, based on applying the L′DL
decomposition of the covariance matrix. The present papers
expands this line of research by demonstrating the applica-
tion of the solution to the traffic system state-space model.

The layout of the paper is organized in the following
way. Section II provides the necessary basic facts from
urban traffic control and describes the model of the traffic
situation at the arm (or arms) of the intersection. Section
III is devoted to the factorized version of Kalman filter-
ing, applied to the normal traffic system model. Section IV
demonstrates the experiments with the factorized Kalman
filter and the traffic model. The experiments use the data
from realistic traffic simulation for the case with one and
two intersections with four arms. The remarks in Section V
close the paper.

II. TRAFFIC SYSTEM MODEL

A. Basic Facts of Traffic Control
In order to describe an intersection with one or several

arms by a model, it is necessary to introduce some basic
concepts of traffic control [6]. The controlled intersection is
supposed to be equipped by the measuring detectors. Their
number and location can vary because of the road condi-
tions, but at this paper it is assumed, that the input detectors
are placed about 100 m before the stop line at the input lane
of the intersection arm, and the output lanes are equipped
by the output detectors.

The detectors measure the quantities, which are of im-
portance for the intersection modelling. The quantities are
as follows.

• Intensity, expressing a number of the passing cars per
hour [c/h].

• Occupancy, reflecting a proportion of a time period
of activating the detector by cars [%].
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The observed quantities are influenced by such the con-
trol variables as cycle time of the traffic signal, meaning
a period of a phase exchange, and time of a green light
in one direction in seconds [s]. At the paper these vari-
ables are taken as the known inputs. The intersection lane is
also characterized by such a quantity as the saturated flow,
which expresses the maximal number of cars, which can
pass through the lane per hour in the case of the green light
[c/h].

The queue length ξt at the intersection arm is the main
state variable at discrete time moments t ∈ t∗ ≡ {1, . . . , t̊},
that has to be estimated. Throughout the paper the queue
length is considered in meters [m]. The general idea of its
evolution lies in the statement, that the queue length is equal
to the previous queue plus arrived cars minus departed cars.
It can be expressed in the following way.

ξt+1 = δtξt − [δtS + (1− δt)It]zt︸ ︷︷ ︸
departed cars

+ It,︸︷︷︸
arrived

(1)

where S is the saturated flow; It is the input intensity; zt is
a green time; δt is a time-varying parameter so that δt = 1
if the queue exists and δt = 0 otherwise. The parameter
δt should be described in more detail. The presence of δt

in the traffic model reflects two following important situa-
tions, that can occur at the intersection lane.

• The first one is the queue length and the input in-
tensity are relatively small. The output intensity of
the intersection lane includes the arrived cars (input
intensity) and the previous queueing cars. In such
a case all the cars can pass through the lane (lanes)
without queue and δt = 0. This relation can be intu-
itively understood from (1).

• The second case happens, when the input intensity
along with the previous queue length is too big. It
leads to the situation, that only the saturated flow of
the cars during the green time can pass through the
intersection lane, and the queue occurs (δt = 1).

B. Model of the Intersection Arm

The state-space model, used at the paper, has the follow-
ing form.

xt+1 = Atxt + Btzt + Ft + wt, (2)
yt+1 = Cxt+1 + Gt + vt+1, (3)

where xt is the system state, yt – the system output, At,
Bt, C are matrices with parameters, Ft and Gt are specific
traffic vectors, defined below. The process noise wt and
the measurement noise vt are Gaussian ones and have zero
means and known covariances Rw and Rv respectively. In
order to describe the traffic situation at one arm of the in-

tersection, the model (2)-(3) can be treated as [7][
ξt+1

Ot+1

]
︸ ︷︷ ︸

xt+1

=
[

δt 0
κ β

]
︸ ︷︷ ︸

At

·
[

ξt

Ot

]
︸ ︷︷ ︸

xt

+
[
−δt · S − (1− δt) · It

0

]
︸ ︷︷ ︸

Bt

·zt

+
[

It

λ

]
︸ ︷︷ ︸

Ft

+wt, (4)

[
Yt+1

Ot+1

]
︸ ︷︷ ︸

yt+1

=
[
−1 0
0 1

]
︸ ︷︷ ︸

C

·
[

ξt+1

Ot+1

]
︸ ︷︷ ︸

xt+1

+
[

ξt + It

0

]
︸ ︷︷ ︸

Gt

+vt+1, (5)

where the state xt contains not only the unobserved queue
length, but also the measurable occupancy Ot, which is
added to ensure the observability of the model. The uti-
lization of the occupancy in the model expresses its pro-
portionality to the length of the queue. The parameters κ,
β, λ are generally time-variant. They reflect a character of
traffic during a week and weekend as well as the main peak
hours during a day. The measurable output yt is given by
yt = [Yt, Ot]

′, where Yt is the output intensity, i. e. the in-
tensity measured by the output detector, ′ is a transposition
sign.

C. Intersection Model
The model of the intersection is modified according to

the number of the arms n, that is reached by adding the in-
dex i = 1, . . . , n to (4)-(5). Thus, the state equation (4) of
the model of the intersection with n arms takes the follow-
ing form.

ξ1,t+1

...
ξn,t+1

O1,t+1

...
On,t+1


=

[
∆t Z
Kt Bt

]
· xt +

[
−B̃t

Z

]
· zt

+



I1,t

...
In,t

λ1,t

...
λn,t


+ wt, (6)
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where ∆t, Kt, Bt and B̃t are the diagonal matrices of
appropriate dimensions with elements δi,t, κi,t, βi,t and
bi,t = δi,tSi + (1 − δi,t)Ii,t respectively at the main di-
agonal. For example, matrix ∆t has a form

∆t =


δ1,t 0 · · · 0
0 δ2,t · · · 0
...

...
. . .

...
0 0 · · · δn,t

 . (7)

The rest of the mentioned matrices have an analogous form
with the corresponding elements. Matrix Z is a zero square
matrix of dimension (n× n).

The output equation (5) requires to be slightly modified.
Modelling the intersection, one should introduce the addi-
tional parameter turn rate αi,j , which describes a ratio of
the cars, going from the i-th arm and turning to the j-th
arm. This parameter is assumed to be known and constant
and can be usually obtained from the traffic expert informa-
tion of the considered region. Thus, the output equation for
the intersection is

Y1,t+1

...
Yn,t+1

O1,t+1

...
On,t+1


=

[
−M Z
Z 1

]
· xt+1 +

[
M Z
Z 1

]

×


ξ1,t + I1,t

...
ξn,t + In,t

0

 + vt+1, (8)

where 1 is a unit matrix of the appropriate dimension, 0 is
a zero column vector andM includes the parameters of the
turn rate in the following way.

M =


0 α21 α31 · · · αn1

α12 0 α32 · · · αn2

α13 α23 0 · · · αn3

...
...

...
. . .

...
α1n α2n α3n · · · 0

 (9)

It should be noted, that the output equation (5), or (8), re-
flects the point, that the output intensity is equal to the num-
ber of cars passed through the intersection arm. It explains
the negative queue length at time moment t+1 and positive
at moment t in (8). In this way, the model of the intersection
with n arms includes equations (6)-(8).

III. FACTORIZED KALMAN FILTERING

The factorized version of Kalman filtering, proposed in
[5], assumes the use of the L′DL-decomposed covariance

matrices, where L is lower triangular matrix with unit diag-
onal and D is a diagonal matrix. When applying the factor-
ized filter to the traffic state-space model (2)-(3), one can
present the model in the following way.

xt+1 = Atxt + Btzt + Ft + W ′ωt, (10)
yt+1 = Cxt+1 + Gt + V ′vt+1, (11)

where W ′RwW and V ′RvV are L′DL decomposed
matrices. The state estimate is assumed to be calcu-
lated with L′DL-factorized covariance matrix, i. e. as
N (x̂t+1;Pt+1), where Pt+1 = L′

P (t+1)DP (t+1)LP (t+1).
The initial values of mean x̂0 and covariance
P0 = L′

0D0L0 are known.
The algorithm of the factorized Kalman filter includes

the coupled procedures of time updating and data updating
as follows (for acquaintance with the Kalman filter a reader
is referred to [1]).

Time updating

W ′−1x̂−t+1 = W ′−1Atx̂t + W ′−1Btzt + W ′−1Ft,(12)

P−
t+1 = AtPtA

′
t + W ′RwW, (13)

Data updating

Kt+1 = P−
t+1C

′(CP−
t+1C

′ + V ′RvV )−1, (14)

Pt+1 = (P−
t+1

−1
+ C ′(V ′RvV )−1C)−1, (15)

x̂t+1 = x̂−t+1 + Kt+1(yt+1 − Cx̂−t+1 −Gt). (16)

Several explaining remarks should be made here. Time
updating step predicts the state mean x̂−t+1 and covari-
ance matrix P−

t+1 (the superscript “-” denotes a priori es-
timate). Multiplication of (12) by inverse matrix W ′−1 en-
ables holding a triangular structure of matrices. With the
help of introducing the new state vector ˜̂xt = Atx̂t and
the new vector of the green time z̃t = Btzt, the triangular
structure becomes obvious and can be used for individual
approach to the state entries. The structure can be schema-
tically demonstrated as follows.


· · · ·

· · ·
· ·

·


︸ ︷︷ ︸

W ′−1


·
·
·
·


︸ ︷︷ ︸

x̂−t+1

=


· · · ·

· · ·
· ·

·


︸ ︷︷ ︸

W ′−1


·
·
·
·


︸ ︷︷ ︸

˜̂xt

+ W ′−1z̃t + W ′−1Ft.

It can be shown, that denoting W ′−1 = H for shorter no-
tion, one can obtain the following relation for the predicted
estimate of the i-th state factor with dimension of the state
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vector, equal to 2n. H is the upper triangular matrix with
unit diagonal.

x̂−i(t+1) +
2n∑

k=i+1

hikx̂−k(t+1) (17)

= ˜̂xi(t) +
2n∑

k=i+1

hik
˜̂xk(t) + z̃i(t) +

2n∑
k=i+1

hikz̃k(t)

+ fi(t) +
2n∑

k=i+1

hikfk(t),

x̂−i(t+1) = ˜̂xi(t) +
2n∑

k=i+1

hik(˜̂xk(t) − x̂−k(t+1))

+ z̃i(t) + fi(t) +
2n∑

k=i+1

hik(z̃k(t) + fk(t)). (18)

The updating of the covariance matrix in (13) is per-
formed as L′−

P (t+1)D
−
P (t+1)L

−
P (t+1) without forming this

product. The calculation exploits the algorithms from the
toolbox Mixtools [8] and does not contain numerically dan-
gerous operations.

As regards the data updating procedure, it corrects the
state estimate by incorporating the information, contained
in the input and output intensities. The calculation of the
covariance matrix is based on the matrix inversion lemma
[9]. Exploitation of the mentioned lemma in (15) allows
obtaining the elegant solution for the efficient update of
covariance matrix Pt+1 as L′

P (t+1)DP (t+1)LP (t+1). The
Kalman gain Kt+1 is used in calculation of the posterior
mean x̂t+1 in (16). The mean of the individual i-th state
entry takes a form

x̂i(t+1) = x̂−i(t+1) +
2n∑

j=1

kij(t+1)γj(t+1), (19)

where the known column vector

γt+1 = yt+1 − Cx̂−t+1 −Gt. (20)

The schematic representation of (16) is shown below.
·
·
·
·


︸ ︷︷ ︸

x̂t+1

=


·
·
·
·


︸ ︷︷ ︸

x̂−t+1

+


· · · ·
· · · ·
· · · ·
· · · ·


︸ ︷︷ ︸

Kt+1


·
·
·
·


︸ ︷︷ ︸

γt+1

.

IV. ILLUSTRATIVE EXPERIMENTS

A. Experiment 1 – Intersection
The factorized version of the state estimation has been

tested on the intersection with four arms. All the input and

output lanes of the intersection are supposed to be equipped
by the detectors and, therefore, are measured. A scheme of
the intersection is shown at Fig. 1. Fig. 1 demonstrates, that

Figure 1: The intersection with four measured arms

every input lane provides the observed input intensity Ii,t

and occupancy Oi,t, while the i-th output lane – the output
intensity Yi,t at time moment t respectively.

The modelling of the intersection has been based on
the data, simulated by the traffic microsimulator AIMSUN
[10]. The software AIMSUN is able to simulate very real-
istic traffic situations, taking into account the region con-
ditions practically of any traffic network. 4800 data, simu-
lated by AIMSUN, have been taken for the experiment. The
time-varying parameters κi,t, βi,t, λi,t, forming the matri-
ces of parameters in the model 2)-(3), have been estimated
off-line for some period of time and then were used for run-
ning the filter. The parameter δi,t has been set so that it
would indicate whether the queue is forming according to
the simulated input intensities and saturated flows.

The filter has been run and estimated the queue lengths.
The estimated lengths of the queues have been compared
with the simulated ones. The result can be seen at Fig. 2.
The order of the arm positions at Fig. 2 is the same
as the arms appear at Fig. 1. The queue on the i-th,
i = {1, . . . , n}, arm of the intersection is concerned to
the i-th entry of the unobservable part of the state vec-
tor [ξ1,t . . . ξn,t]′. Fig. 2 demonstrates the good correspon-
dence of the simulated and estimated values.

The estimated values have been compared with the re-
sults, obtained from the Kalman filter. The obtained state
mean values and the covariance matrices (after multiply-
ing the L′DL-factorized matrices) showed very insignifi-
cant difference and confirmed the functioning the algorithm
with the traffic model. The result of the whiteness test [11]
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Figure 2: Factorized Kalman filter for the intersection

of the prediction error is 0.9883, which demonstrates, that
there is no more information to be extracted from the data.

B. Experiment 2 – Microregion
The second experiment of application of the factorized

Kalman filter has been held with a microregion. The con-
sidered simulated microregion includes two interconnected
intersections, each one with four arms. In practice it is
very usual situation, when the microregion has some un-
measured input and output lanes. At the experiment two
internal arms at the point of connection of the intersections
are not equipped by detectors and not measurable. The rest
of the arms are supposed to be measured by detectors. The

Figure 3: The microregion

scheme of the microregion is plotted at Fig. 3, where the
Roman numerals indicate the intersections and the Arabian

numerals correspond to the numbers of the input lanes. The
lanes (3) and (5) are placed between the intersections and
not measured. About 300 data have been simulated for the
experiment. At the lanes, where the intensities and occu-
pancies were assumed not to be observed, the zero arrays
have been used instead of the simulated quantities.

The results of the queue length estimation at the arms
1 and 6 respectively and comparison with the simulated
queues are shown at Fig. 4. The estimation for all the arms,
which have been measured, gave the similar adequate re-
sults.
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Figure 4: Simulated and estimated queues at arms 1 and 6

Fig. 5 demonstrates the results of the queue estimation
at the unmeasured intersection lanes (3) and (5). It can be
seen, that the correspondence between the simulated and
the estimated values is a little bit worse, than for the mea-
sured input lanes. The estimation problem of the microre-
gion with the unmeasured lanes is usually solved in two
following ways. The unmeasured intensities and occupan-
cies can be either added to the process noise, if they are
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Figure 5: Estimation results at the unmeasured arms

not significant for the whole microregion, or they should be
estimated. In the second case the model requires the modi-
fying the state equation by involving the unmeasured quan-
tity, which usually causes the extension of the state vector
and increasing its dimension. At the presented experiment
the presence of the detector, for example, at the lane (5)
is not necessary, because the input intensities at the lanes
(1), (2) and (4) are measured and the parameter of the turn
rate is known. The similar situation is with the lane (3).
In this way, the unmeasured quantities here can be conside-
red as the noise, including the inaccuracy of the model and
observations. However, the unmeasured lane, for example,
(2), would significantly influence the output intensity on
the lane (1) as well as input and output intensities on the
lane (5). In this case it would be necessary to estimate the
unmeasured intensity.

The whiteness test of the prediction error at the present
experiment results in value 0.9987.

V. CONCLUSION

The paper is devoted to the application of the factorized
version of the Kalman filter [5] to the traffic state-space
model. The factorized filter is directed at the individual
estimation of the entries (factors) of the state vector and
is expected to help reaching the global aim of the research
– mixed-typed states estimation, still remaining the open
problem. The present paper continues a sequence of re-
search in this area and demonstrates the estimation of the
queue length, used as the main state variable in the model
of the urban traffic system. The description of the traffic
system model is presented for the case with the intersection
arm and for the intersection with n arms. The application of
the filter is demonstrated as the theoretical solution as well
as by means of illustrative examples with the simulated in-
tersections.
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Prague, July 2005, pp. 1–6, IFAC.
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Rep., ÚTIA AV ČR, Praha, 2006.
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