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A motivating real case.

The problem: Small area estimation of mean tourist expenditure in the
autonomous community of Galicia with data from year 2004.

Galicia is a region in the northwest of Spain which is partitioned into
D = 52 counties, regarded here as small areas.

The available data were:
the number of offered hotel vacanciesxd for each small aread, and
the expenditure in accommodation/dayydj of each touristj in each
aread.
in total, 2496 tourists were interviewed.

The direct estimate of the mean expense in accomodation/dayin that
small area is

yd =

nd
∑

j=1

ydj/nd,

wherend is the sample size of small aread.

Small Area Estimation under Fay–Herriot Models with Nonparametric Estimation of Heteroscedasticity – p. 3/42



A motivating real case.
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Figure 1a. Small area direct estimates of the mean tourist expense in
accommodation (yd) versus numbers of vacancies in hotels (xd).
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A motivating real case.

The following Fay-Herriot model is considered

yd = β0 + β1xd + ud + w
1/2
d ed, d = 1, . . . , D,

whereud ∼ N(0, σ2
u) anded ∼ N(0, σ2

e), d = 1, . . . , D, are all
independent.

First we fit the associated homoscedastic model obtained by replacing
wd = 1, d = 1, . . . , D, andσ2

e = S2
y where

S2
y =

1

D

D
∑

d=1

S2
yd, S2

yd =
1

nd(nd − 1)

nd
∑

j=1

(ydj − yd)
2, d = 1, . . . , D.

S2
yd is the estimate of the sampling error of the direct estimatoryd, and

S2
y the mean ofS2

yd, d = 1, . . . , D.
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A motivating real case.
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Figure 1b. Residualsyd − xt
dβ̂0 − ûd0 versus numbers of hotel vacanciesxd in

each area.
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A motivating real case.

In Figure 1 and 2 we observe heteroscedasticity (wdj 6= 1).

However, the parametric form of the error variance functioncannot be
clearly guessed from those plots.

In this situation, it makes sense to consider a nonparametric approach for
estimating the heteroscedasticity function.

Thus, we consider that the available data(xt
d, yd), d = 1, . . . , D, follow

a Fay-Herriot model, where heteroscedasticity is introduced through the
weightswd, that is,

yd = xt
dβ + ud + w

1/2
d ed, ud

iid
∼ (0, σ2

u), ed
iid
∼ (0, σ2

e). (1)

yd is the direct estimator of the mean of thed-th small area,
xd is a vector that contains the values ofp auxiliary variables (p
constant),
β is the vector of (fixed) effects of thex-variables,
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A motivating real case.

Random effects and residuals are such that
ud is a random effect associated to small aread with unknown
constant varianceσ2

u, and
ed is the random error that represents the sampling error of the
direct estimatoryd, independent ofud, and with varianceσ2

e .

Let zd denote eitherxd if p = 1 or the mean responsext
dβ if p > 1.

We assume that the heteroscedasticity weights are functionof zd;
that is,wd = w(zd), d = 1, . . . , D, where the functionw(·) is
smooth in the sense of assumption (M4) below.

In matrix notation model (1) can be written as

y = Xβ + u + W 1/2e, u ∼ (0, σ2
uID), e ∼ (0, σ2

eID),

Small Area Estimation under Fay–Herriot Models with Nonparametric Estimation of Heteroscedasticity – p. 8/42



Fay-Herriot models.

Themain objective is predicting a mixed effectτ = ℓtβ + mtu, whereℓ and
m are vectors with known elements.

For instance, takingℓ = xd andm to be a vector of zeros except for a
one in positiond, we obtain the mean of thed-th areaµd = xt

dβ + ud.

A predictor ofτ can be obtained under three particular cases of model (1):

1) wd known, d = 1, . . . , D:

In this situation, a predictor ofτ is typically obtained by a two-stage procedure.

In the first stageσ2
u is considered to be known.

Then the best linear unbiased predictor (BLUP) ofτ is given by
τ̃ = ℓtβ̃ + mtũ = τ̃(σ2

u), where

β̃ =
(

XtΣ−1X
)−1

XtΣ−1y

ũ = (ũ1, . . . , ũD)t = σ2
uΣ−1(y − Xβ̃).
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Fay-Herriot models.

In the second stageσ2
u is regarded as unknown.

Then, an unbiased estimator ofσ2
u is (Prasad and Rao, 1990)

σ̂2
u =

ytPy − σ2
e tr(PW )

D − p
, for P = ID − X(XtX)−1Xt. (2)

The predictor obtained by replacingσ2
u by σ̂2

u in the BLUP, that is,
τ̂ = τ̃(σ̂2

u), is usually called empirical BLUP (EBLUP).

If we denoteΣ̂ = σ̂2
uID + σ2

eW , the EBLUP can be written as

τ̂ = ℓtβ̂ + mtû, where

β̂ =
(

XtΣ̂−1X
)−1

XtΣ̂−1y, û = (û1, . . . , ûD)t = σ2
uΣ̂−1(y−Xβ̂).

(3)
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Fay-Herriot models.

2) wd = 1, d = 1, . . . , D: In this case the model is homoscedatic.

The estimators̃β andσ̃2
u defined in Case 1) reduce to

β̂0 = (XtX)−1Xty and σ̂2
u0 =

(y − Xβ̂0)
t(y − Xβ̂0)

D − p
− σ2

e .

The EBLUP ofτ obtained from them is

τ̂0 = ℓtβ̂0 + mtû0,

û0 = (û10, . . . , ûD0)
t = σ̂2

u0(σ̂
2
u0 + σ2

e)−1(y − Xβ̂0).
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Fay-Herriot models.

3) wd = w(zd), d = 1, . . . , D where the function w(·) is unknown:

In this case the BLUP ofτ is function of the unknown parameters

σ2
u and W = diag1≤d≤D(wd);

that is,

τ̃ = ℓtβ̃ + mtũ = τ̃(σ2
u, W )

and we need estimators ofσ2
u andW to derive the EBLUP ofτ .
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Fitting algorithm.

Carroll (1982) proposed a kernel-based estimator of the error variance
functionσ2(z) under the following model

yd = xt
dβ + σd εd, εd

iid
∼ (0, 1), (4)

whereσd denotes the squared root of the varianceσ2
d = σ2(zd).

Model (1) can be restated in the form of (4), where the error variance
function is related to the heteroscedasticity functionw(·) of model (1)
throughσ2(z) = σ2

u + w(z) σ2
e .

Hence the estimator proposed by Carroll (1982), together with an
estimator ofσ2

u, yield an estimator ofw(z).

Following this idea we propose the algorithm below for estimating the
unknown parameters involved in model (1); namely,β, σ2

u and the
heteroscedasticity functionw(z).
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Fitting algorithm.

Step 1. Calculate initial parameter estimatesβ̂0 andσ̂2
u0 via an erroneous

homoscedastic model obtained by replacingwd = 1 in model (1).

Proposition. Under regularity assumptions, the estimatorsβ̂0 andσ̂2
u0 are

consistent for their respective true valuesβ andσ2
u under the correct model (1).

Step 2. Usingβ̂0 andσ̂2
u0, estimate the heteroscedasticity functionw(z) as

ŵh(z) = (σ̂2
h(z) − σ̂2

u0)/σ
2
e ,

whereσ̂2
h(z) is the estimator proposed by Carroll (1982), namely

σ̂2
h(z) =

∑D
d=1 k {(z − zd0)/h} (yd − xt

dβ̂0)
2

∑D
d=1 k {(z − zd0)/h}

.

wherezd0 denotesxd if p = 1 or xt
dβ̂0 if p > 1, k(·) is a kernel function andh

is a bandwidth.
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Fitting algorithm.

σ̂2
d,h , σ̂2

h(zd) denotes the estimator of the error varianceσ2
d of equation

(4),

ŵd,h , ŵh(zd) denotes the estimator of the heteroscedasticity weightwd

in model (1), ford = 1, . . . , D.

Step 3. With the estimated matrix̂Wh = diag1≤d≤D(ŵd,h) obtained from Step

2, reestimate model parametersβ andσ2
u.

σ2
u is estimated by the method of moments,

σ̂2
u,h =

ytPy − σ2
e tr(PŴh)

D − p
, for P = ID − X(XtX)−1Xt.

Thenβ can be reestimated by the following formula

β̂h = (XtΣ̂−1
h X)−1XtΣ̂−1

h y, for Σ̂h = σ̂2
u,hID + σ2

eŴh.
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Consistency of estimators.

Proposition. Under regularity conditions, the initial estimatorsβ̂0 andσ̂2
u0

defined in Step 1 satisfy

(a)|β̂0 − β‖ = Op(D
−1/2); (b)|σ̂2

u0 − σ2
u| = Op(D

−1/2).

Proposition. Under regularity conditions

sup
z∈Z

|ŵh(z) − w(z)| = op(D
−1/4).

Proposition. Under regularity conditions, the estimatorsσ̂2
d,h andŵd,h

obtained in Step 3 satisfy

(a)

∣

∣

∣

∣

∣

1

D

D
∑

d=1

(

σ̂2
d,h − σ2

d

)

∣

∣

∣

∣

∣

= Op(D
−1/2); (b)

∣

∣

∣

∣

∣

1

D

D
∑

d=1

(ŵd,h − wd)

∣

∣

∣

∣

∣

= Op(D
−1/2).
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Bandwidth selection.

Proposition. Under Reg. Ass. bandwidths minimizing AMSE and AMISE are:

(i) The local optimal bandwidth

hd =

[

σ4(zd)
∫

k2(t)dt

jDk2
j

[

(σ2)(j)(zd)
]2

]1/(2j+1)

, d = 1, . . . , D;

(ii) The global optimal bandwidth

h =

[

∫

σ4(z)dz
∫

k2(t)dt

jD k2
j

∫ [

(σ2)(j)(z)
]2

dz

]1/(2j+1)

.

An easy-to-obtain bandwidth is

h⋆ = argminh≥0

{

D
∑

d=1

(yd − µ̂d,h)2

}

.
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Mean squared error of small area estimators.

For illustration, we give the spelled out formula of the naive estimator of
the mean squared error for one explanatory variable; that is, for xd = xd

andβ = β, and for the parameterτ = µd = xdβ + ud.

Suppose thatW = diag1≤d≤D(wd) is known butσ2
u unknown.

Under this setup,̂σ2
u given in (2) is an unbiased estimator ofσ2

u, with
variance

V ar(σ̂2
u) =

2

D

[

σ4
u + 2σ2

uσ2
e +

σ4
e

D

D
∑

d=1

w2
d

]

+ o(D−1),

see Prasad and Rao (1990), p. 167.

The EBLUP ofµd is µ̂d = xdβ̂ + ûd, whereβ̂ andûd are given in (3).
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Mean squared error of small area estimators.

The Prasad-Rao approximation of the mean squared error ofµ̂d is

MSE(µ̂d) ≈ g1d(σ
2
u, W ) + g2d(σ

2
u, W ) + g3d(σ

2
u, W ), (5)

g1d(σ
2
u, W ) =

σ2
uσ2

e wd

σ2
u + σ2

e wd
,

g2d(σ
2
u, W ) =

σ4
e w2

d x2
d

(σ2
u + σ2

e wd)2

[

D
∑

d=1

x2
d(σ

2
u + σ2

e wd)
−1

]−1

,

g3d(σ
2
u, W ) =

σ4
e w2

d V ar(σ̂2
u)

(σ2
u + σ2

e wd)3
.

Thus, (5) can be used as a naive approximation of the mean squared error of the

predictorµ̂d,h = xdβ̂h + ûd,h. An estimator ofMSE(µ̂d,h) is

mse(µ̂d,h) = g1d(σ̂
2
u,h, Ŵh) + g2d(σ̂

2
u,h, Ŵh) + 2g3d(σ̂

2
u,h, Ŵh).
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Bootstrap procedure.

Alternatively, a bootstrap procedure is:

Step 1. Take a “pilot” bandwidthg with g > h. Fit the model to the initial
sampley by using the introduced algorithm. Obtain model parameter estimates

Ŵg = Ŵg(y), σ̂2
u,g = σ̂2

u,g(y) andβ̂g = β̂g(y).

Step 2. Generate a vectorT1 with D independent copies of a variableT1 with
E(T1) = 0 andE(T 2

1 ) = 1. Construct the vectoru∗ = σ̂u,gT1, with mean0D

and covariance matrix̂σ2
u,gID.

Step 3. Generate a vectorT2 with D independent copies of a random variable
T2, independent ofT1, with E(T2) = 0 andE(T 2

2 ) = E(T 3
2 ) = 1. Construct

the vectore∗ = σeT2, with mean0D and covariance matrixσ2
eID.

Step 4. With the elements of the incidence matrixX known, generate bootstrap
datay∗ from the model

y∗ = Xβ̂g + u∗ + Ŵg
1/2

e∗. (6)
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Bootstrap procedure.

Let E∗, V ar∗ andMSE∗ denote respectively expectation, variance and mean
squared error under the bootstrap model (6) given the initial datay. It holds that

E∗(y
∗) = Xβ̂g, and V ar∗(y

∗) = σ̂2
u,gID + σ2

eŴg,

Step 5. Using the bootstrap datay∗ and the introduced algorithm with
bandwidth parameterh < g, calculate bootstrap parameter estimates

Ŵ ∗
h = Ŵh(y∗), σ̂2∗

u,h = σ̂2
u,h(y∗), β̂

∗

h = β̂h(y∗),

û∗
h = ûh(y∗) = (û∗

1,h, . . . , û∗
D,h)t.

From them, construct the bootstrap EBLUP

τ̂∗
h = ℓtβ̂

∗

h + mtû∗
h.

Small Area Estimation under Fay–Herriot Models with Nonparametric Estimation of Heteroscedasticity – p. 21/42



Bootstrap procedure.

Thebootstrap estimate of MSE(τ̂h) is MSE∗(τ̂
∗
h) = E∗(τ̂

∗
h − τ∗)2.

This quantity can be approximated by Monte Carlo, repeatingSteps 2-5
for b = 1, . . . , B.

Let u∗(b) be the generated vector of random effects,

τ∗(b) = ℓtβ̂g + mtu∗(b) the true value of the parameter andτ̂
∗(b)
h the

estimate ofτ∗(b) in theb-th replication.

TheMonte Carlo approximation of MSE∗(τ̂
∗
h) is

mse∗1(τ̂h) = B−1
B

∑

b=1

(

τ̂
∗(b)
h − τ∗(b)

)2

. (7)
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Bootstrap procedure.

A bias corrected bootstrap estimator is

mse∗2(µ̂d,h) =
1

B

B
∑

b=1

(

µ̂
∗(b)
d,h − µ̃

∗(b)
d

)2

+ 2
[

g1d(σ̂
2
u,h, Ŵh) + g2d(σ̂

2
u,h, Ŵh)

]

−
1

B

B
∑

b=1

[

g1d(σ̂
2∗(b)
u,h , Ŵ

∗(b)
h ) + g2d(σ̂

2∗(b)
u,h , Ŵ

∗(b)
h )

]

,

whereµ̃
∗(b)
d andµ̂

∗(b)
d,h are respectively the BLUP and EBLUP of the bootstrap

meanµ∗(b)
d = xdβ̂g + u

∗(b)
d calculated with theb-th bootstrap sample, that is,

µ̃
∗(b)
d = µ̃d(y

∗(b)) = xt
dβ̃(y∗(b)) + ũd(y

∗(b)),

µ̂
∗(b)
d,h = µ̂d,h(y∗(b)) = xt

dβ̂h(y∗(b)) + ûd,h(y∗(b)).

Small Area Estimation under Fay–Herriot Models with Nonparametric Estimation of Heteroscedasticity – p. 23/42



First Simulation Experiment.

A first simulation experiment was planned for analyzing the performance of

the kernel-based estimator of the variance functionσ̂2
h(·), and

the estimators of the small area meansµ̂d,h.

We were also interested in comparing the results obtained with

the local optimal bandwidth, and

the simple global bandwidthh0 = range(xd)/2.

For this,I = 105 samplesy(i), i = 1, . . . , I, were generated as follows:

The values of the explanatory variable were taken as
xd = xd = −0.5 + d/D, d = 1, . . . , D.

Small Area Estimation under Fay–Herriot Models with Nonparametric Estimation of Heteroscedasticity – p. 24/42



First Simulation Experiment.

Three families of standard deviationsνd = σ2
ewd were considered

(Carroll, 1982),

A) ν
1/2
d = [a11 + a12(α10 + α11xd)

2]1/2, with a11 = 0.15,
a12 = 0.03, α10 = 5 andα11 = 6;

B) ν
1/2
d = a21 exp{a22|α20 + α21xd|}, with a21 = 0.15, a22 = 0.04,

α20 = 50 andα21 = 60;

C) ν
1/2
d = a31 exp{a32(α30 + α31xd)

2}, with a31 = 0.15,
a32 = 1/1600, α30 = 50 andα31 = 60.

The values of the response variableyd were generated from model (1)
with β = β = 60, σ2

u = 9 and one of the families A–C of error variances.

The simulations were reproduced for sample sizesD = 100 and
D = 400 in order to observe the asymptotic behavior.
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First Simulation Experiment.

For each samplei, we computed the estimated error variances and the
predictors of the small area meansµd = xdβ + ud under the following
four scenarios:

Scenario 1. The true error variancesνd are known;
Scenario 2. The model is erroneously regarded as homoscedastic,
and therefore a homoscedastic model is fitted. We have taken as
constant error variance, the mean of the true variances
σ2

e =
∑D

d=1 νd/D.

Scenario 3. The heteroscedasticity functionw(x) = ν(x)/σ2
e is

unknown and it is estimated with the local optimal bandwidthand
the kernel function

k(v) =

{

3(1 − |v|)2/2 if |v| < 1;

0 if |v| ≥ 1.
(8)

Scenario 4. The same as Scenario 3, but with global bandwidth
h0 = range(xd)/2 = 1/2.
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First Simulation Experiment.

For each small aread, let us denotêνk(i)
d andµ̂

k(i)
d respectively to the

error variance and the small area estimator obtained with Monte Carlo
samplei under Scenariok, k = 1, 2, 3, 4.

The output of the simulation study is the empirical expectation of ν̂k(i)
d

and the empirical mean squared error ofµ̂
k(i)
d , that is,

ν̂
k

d =
1

I

I
∑

i=1

ν̂
k(i)
d , EMSE(µ̂k

d) =
1

I

I
∑

i=1

(

µ̂
k(i)
d − µ

(i)
d

)2

, k = 1, 2, 3, 4.

In Figures 2-4 we plot the values ofEMSE(µ̂k
d) Under the 4 scenarios.

In Figures 5-7 we plot the true error variancesνd (labelled withvar1),
the (constant) error varianceσ2

e (labelled withvar2) and the empirical

expectations of the error variance estimatorsν̂
k

d, k = 3, 4, under
Scenarios 3 and 4 respectively (labelled withvar3 andvar4).
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First Simulation Experiment.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392

domains (D=400)

E
M

S
E

 (
w

it
h

 v
a
r 

A
)

1 2 3 4

Figure 2. EMSE(µ̂k
d), k = 1, 2, 3, 4, for family A and for400.
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First Simulation Experiment.
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Figure 3. EMSE(µ̂k
d), k = 1, 2, 3, 4, for family B and for400.
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First Simulation Experiment.
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Figure 4. EMSE(µ̂k
d), k = 1, 2, 3, 4, for family C and for400.
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First Simulation Experiment.
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First Simulation Experiment.
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Figure 6. ν̂
k

d, k = 1, 2, 3, 4 for family B and forD = 400.
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First Simulation Experiment.
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Second Simulation Experiment.

Thesecond simulation experiment was designed for comparing under
scenario 3 the two bootstrap-based estimators ofMSE(µ̂d,h) and the
naive analytical estimator derived from Prasad-Rao’s formula, with the
empirical valuesEMSE(µ̂d,h).

In this experiment,I = 103 Monte Carlo samples were generated from
model (1) withβ = 60 andσ2

u = 9 as before.

With each Monte Carlo sample, model parameter estimates were
obtained by using the introduced algorithm with the local optimal
bandwidthhd and the kernel given in simulation 1.

From them, the bootstrap model was constructed andB = 103 bootstrap
samples were generated.

Following the recommendation of Härdle and Marron (1991), the
bootstrap model was constructed using a local “pilot” bandwidth gd

greater thanhd; concretely, we tookgd = 2hd, d = 1, . . . , D.

Then the model was fitted again to each bootstrap sample, and finally
MSE(µ̂d,h) is estimated as a mean over bootstrap replicates.
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Second Simulation Experiment.

0

0,5

1

1,5

2

2,5

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 361 373 385 397

domains (D=400)

e
s

ti
m

a
te

d
 M

S
E

 (
w

it
h

 v
a

r 
A

)

EMSE mse mse*1 mse*2

Figure 8. EMSEd, msed, mse∗1d andmse∗2d , under family A, forD = 400.
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Second Simulation Experiment.
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Figure 9. EMSEd, msed, mse∗1d andmse∗2d , under family B, forD = 400.
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Second Simulation Experiment.
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Figure 10. EMSEd, msed, mse∗1d andmse∗2d , under family C, forD = 400.
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Analysis of tourist accommodation data from Galicia.
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expensesyd.
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Analysis of tourist accommodation data from Galicia.

d xd yd S2

yd
µ̂d,h⋆ msed d xd yd S2

yd
µ̂d,h⋆ msed

1 287 25.08 12.29 22.51 11.18 28 543 11.53 8.04 11.94 11.52
2 966 8.96 1.87 9.87 7.66 29 1047 34.12 61.58 32.68 4.34
3 94 15.00 17.31 15.00 0.01 30 649 28.64 19.72 25.47 12.06
4 663 11.63 4.30 12.16 12.04 31 201 15.48 15.86 14.95 8.19
5 437 12.46 3.71 12.58 12.59 32 428 10.48 10.68 11.04 12.58
6 2347 18.57 2.97 18.76 2.86 33 328 1.03 0.06 3.50 12.01
7 891 15.51 7.05 15.46 8.94 34 597 21.75 18.83 20.04 11.88
8 872 12.15 2.46 12.64 9.16 35 182 0.80 0.64 2.20 7.01
9 858 8.52 3.49 9.62 9.35 36 644 27.68 11.26 24.71 12.07
10 483 12.95 3.05 13.01 12.47 37 521 27.87 23.48 24.77 11.93
11 704 16.20 6.89 15.78 12.11 38 82 11.05 13.64 11.10 11.19
12 404 6.75 6.60 8.14 12.67 39 108 4.38 9.41 4.56 1.42
13 517 9.79 5.06 10.57 11.99 40 258 11.70 6.41 11.79 10.42
14 1241 11.72 2.13 12.52 8.62 41 604 8.27 6.19 9.46 11.92
15 483 24.32 9.63 21.83 12.47 42 579 12.96 9.54 13.11 11.70
16 166 14.04 7.38 13.79 5.82 43 280 2.17 1.13 4.17 11.01
17 366 5.83 4.48 7.37 12.57 44 1683 25.80 6.40 25.08 5.84
18 165 2.86 1.85 3.78 5.72 45 904 21.91 6.47 20.85 8.80

Table B.1. Area-level data, sampling errors of direct estimators, predicted values and estimated

mean squared errors.
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Conclusions.

Linear mixed models

We study the estimation of the error variances in heteroscedastic
Fay-Herriot models.

We propose a non-parametric estimator of the error variance, giving its
order of consistency and showing empirically its behavior.

We give local and global optimal bandwidths for the non-parametric
variance estimator by minimizing the corresponding asymptotic mean
squared error and asymptotic mean integrated squared error.

We address the problem of bandwidth selection in practice.
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Conclusions.

In small-area estimation, a common target is predicting mixed effects, for
instance the means of the areas.

We propose a fitting algorithm for obtaining an EBLUP under a
Fay-Herriot model with unknown heteroscedasticity weights.

We provide three estimators of the mean squared error.
an analytical approximation derived from the results of Prasad and
Rao (1990), and
two more estimators based on bootstrapping.

In the simulation study we have seen that the bias-correctedbootstrap
estimator is often less biased than the other two.

Finally, we apply the introduced methodology tosmall area estimation of
tourist expenditure in Galicia in 2004.

We show that in comparison with direct estimators, the new model-based
estimators preserve the bias small, and at the same time reduce the
variance.
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