A Statistical Approach to Local Evaluation of a Single Texture Image

Jiří Grim & Petr Somol

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague

Department of Pattern Recognition http://www.utia.cas.cz/RO

Seminar DAR, UTIA Prague, April 2007

Outline

- Mixture Based Local Texture Model
 - Local Statistical Texture Model
 - EM Algorithm for Normal Mixtures
 - Computational Details of Model Estimation
 - Sequential Texture Synthesis by Local Prediction
 - Examples of Texture Synthesis
- 2 Local Evaluation of the Source Texture Image
 - Local Evaluation of the Log-Likelihood Values
 - Examples of Texture Evaluation
 - Computational Details of Texture Evaluation

Local Statistical Texture Model

Assumption:

homogeneous texture, i.e. local statistical properties of pixels in a suitably chosen search window are shift-invariant

Digitized grey-scale texture: $\mathcal{Y} = [y_{ij}]_{i=1}^{J}, y_{ij} \approx \text{grey-levels}$

window patch: $\mathbf{x} = (x_1, x_2, \dots, x_N) \in \mathcal{X}, \quad \mathcal{X} = \mathbb{R}^N$

Method:

approximation of the joint multivariate probability density of window pixels by normal mixture of product components

$$P(\mathbf{x}) = \sum_{m \in \mathcal{M}} w_m F(\mathbf{x} | \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m) = \sum_{m \in \mathcal{M}} w_m \prod_{n \in \mathcal{N}} f_n(x_n | \mu_{mn}, \sigma_{mn})$$
$$f_n(x_n | \mu_{mn}, \sigma_{mn}) = \frac{1}{\sqrt{2\pi}\sigma_{mn}} \exp\{-\frac{(x_n - \mu_{mn})^2}{2\sigma_{mn}^2}\}$$

 $\mathcal{M} = \{1, \dots, M\}, \quad \mathcal{N} = \{1, \dots, N\} \approx \text{ index sets}$

dat set: $S = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}\}\ \approx$ by scanning the image with the search window

$$F(\mathbf{x}|\boldsymbol{\mu}_{m},\boldsymbol{\sigma}_{m}) = \prod_{n \in \mathcal{N}} \frac{1}{\sqrt{(2\pi)\sigma_{mn}}} \exp\Big\{-\frac{(x_{n} - \mu_{mn})^{2}}{2\sigma_{mn}^{2}}\Big\}, \quad m \in \mathcal{M}$$

log-likelihood criterion:

$$L = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log P(\mathbf{x}) = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} \log \left[\sum_{m \in \mathcal{M}} w_m F(\mathbf{x} | \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m) \right]$$

EM Algorithm:

$$q(m|\mathbf{x}) = \frac{w_m F(\mathbf{x}|\boldsymbol{\mu}_m, \boldsymbol{\sigma}_m)}{\sum_{j \in \mathcal{M}} w_j F(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\sigma}_j)}$$

$$w'_m = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x}), \qquad \mu'_{mn} = \frac{1}{\sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}} x_n q(m|\mathbf{x})$$

$$(\sigma'_{mn})^2 = -(\mu'_{mn})^2 + \frac{1}{\sum_{\mathbf{x} \in \mathcal{S}} q(m|\mathbf{x})} \sum_{\mathbf{x} \in \mathcal{S}} x_n^2 q(m|\mathbf{x})$$

- high dimension of the window space $N \approx 10^2 10^3$
- low-frequency details ⇒ large window-size ⇒ high dimension
- dimension $N \approx 10^3$ becomes computationally prohibitive
- ullet training data set ${\cal S}$ obtained by scanning the image with the search window (source texture image: 500x500 pixels $\Rightarrow |S| \approx 250000$)
- number of components $M \approx 10^1 10^2$
- EM algorithm: random initialization, 10 20 iterations
- (!) data vectors obtained by scanning the image with the search window are overlapping and therefore not independent
- data set S corresponds only to a "trajectory" in \mathcal{X} produced by scanning the image (\$\Rightarrow\$ less representative, bad sampling properties)
- high-dimensional spaces are "sparse" ⇒ nearly non-overlapping components, $q(m|\mathbf{x})$ behave nearly binary:

$$q_{\max}(\mathbf{x}) = \arg\max_{m} \{q(m|\mathbf{x})\}, \quad \bar{q}_{\max} = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} q_{\max}(\mathbf{x}) \approx 0.95 \div 0.99$$

$$\mathcal{D} = \{j_1, \dots, j_l\} \subset \mathcal{N} \qquad \approx \text{ defined part of the window}$$

$$\mathcal{C} = \{i_1, \dots, i_k\} = \mathcal{N} \setminus \mathcal{D} \approx \text{ predicted part of the window}$$

$$\mathbf{x}_D = (x_{j_1}, \dots, x_{j_l}) \in \mathcal{X}_D, \quad F(\mathbf{x}_D | \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m) = \prod_{n \in D} f_n(\mathbf{x}_n | \boldsymbol{\mu}_{mn}, \boldsymbol{\sigma}_{mn})$$

$$\mathbf{x}_C = (x_{i_1}, \dots, x_{i_k}) \in \mathcal{X}_C, \quad F(\mathbf{x}_C | \boldsymbol{\mu}_m, \boldsymbol{\sigma}_m) = \prod_{n \in C} f_n(\mathbf{x}_n | \boldsymbol{\mu}_{mn}, \boldsymbol{\sigma}_{mn})$$

conditional distribution:

$$P_{C|D}(\mathbf{x}_C|\mathbf{x}_D) = \frac{P_{CD}(\mathbf{x}_C, \mathbf{x}_D)}{P_D(\mathbf{x}_D)} = \sum_{m \in \mathcal{M}} W_m(\mathbf{x}_D) F(\mathbf{x}_C | \boldsymbol{\mu}_{mC}, \boldsymbol{\sigma}_{mC})$$

$$W_m(\mathbf{x}_D) = \frac{f(m) F(\mathbf{x}_D | \boldsymbol{\mu}_{mD}, \boldsymbol{\sigma}_{mD})}{\sum_{j \in \mathcal{M}} f(j) F(\mathbf{x}_D | \boldsymbol{\mu}_{jD}, \boldsymbol{\sigma}_{jD})}$$

PREDICTION: expectation
$$\bar{\mathbf{x}}_C$$
 given \mathbf{x}_D $\bar{\mathbf{x}}_C = \mathrm{E}_{C|D}\{\mathbf{x}_C|\mathbf{x}_D\} = \int \mathbf{x}_C P_{C|D}(\mathbf{x}_C|\mathbf{x}_D) d\mathbf{x}_C = \sum_{m \in \mathcal{M}} W_m(\mathbf{x}_D) \mu_{mC}$ (alternatively: random sampling by $W_m(\mathbf{x}_D)$)

Example 1: Synthesis of the Texture "Ratan"

Image Synthesis: by random sampling the component means μ_{mC} according to the conditional weights $W_m(\mathbf{x}_D)$:

- source texture image: 512x512 pixels $\Rightarrow |S| \doteq 233000$
- dimension: $N = 30 \times 30 = 900$, number of components: $|\mathcal{M}| = 80$
- number of EM iterations: t = 15

Example 1a: Synthesis of the Texture "Ratan"

"Realistic" Image Synthesis: component means μ_m replaced by similar pieces (patches) μ_m^* optimally chosen from the original texture:

texture patches

sampling of patches

$$\mu_m^* = \arg\min_{\mathbf{x} \in \mathcal{S}} \{ \|\mathbf{x} - \mu_m\|^2 \}.$$

Local Evaluation of the Log-Likelihood Values

Motivation:

successful texture synthesis \Rightarrow the properties of source texture image can be described locally by the mixture model $P(\mathbf{x})$

LOG-LIKELIHOOD:

 $\log P(\mathbf{x}) \approx \text{typicality of window patch } \mathbf{x} \rightarrow \text{grey-level at centr of } \mathbf{x}$

Remark: $\log P(\mathbf{x})$ is highly sensitive to grey-level deviation

LOG-LIKELIHOOD RATIO:

 $\log P(\mathbf{x})/P_0(\mathbf{x}) \approx \text{"structural" typicality of window patch } \mathbf{x}$

$$P_0(\mathbf{x}) = \prod_{n \in \mathcal{N}} f_n(x_n | \mu_{0n}, \sigma_{0n}), \quad \mu_{0n} = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} x_n, \quad \sigma_{0n}^2 = \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x} \in \mathcal{S}} x_n^2 - \mu_{0n}^2$$

Remark: μ_{0n}, σ_{0n} are nearly identical for all $n \in \mathcal{N}$

- $\Rightarrow \log P_0(\mathbf{x})$ is nearly invariant to pixel order
- $\Rightarrow \log P(\mathbf{x})/P_0(\mathbf{x})$ is nearly invariant with respect to grey-level deviations and it is more sensitive to structural irregularities.

Example 1: Local Evaluation of Texture Image "Ratan"

Principle: log-likelihood values displayed as grey-levels at center pixel of the search window

Remark: Log-likelihood ratio is less dependent on the grey-level mean and it is more sensitive to structural differences. The structural irregularities of the "ratan" texture (cf. left image) are therefore more clearly identified by the log-likelihood ratio (right image) than by the log-likelihood alone (central image)

Example 2: Local Evaluation of Texture Image "Cushion"

Principle: log-likelihood values are displayed as grey-levels at center pixel of the search window

Remark: Log-likelihood values are highly sensitive to the deviations of grey levels. So e.g. hardly visible light pixels in the left image produce dark spots of window size (central image)

Example 3: Irregularity Evaluation - Texture "Cushion"

Idea: integration of the log-likelihood evaluation into the original image by using red spectral component

Principle: red spectral component contains the inverse log-likelihood values (central image) and log-likelihood ratio values (right image)

Example 4: Irregularity Evaluation - Texture "Carpet"

Idea: integration of the log-likelihood evaluation into the original image by using red spectral component

Principle: red spectral component contains the inverse log-likelihood values (central image) and log-likelihood ratio values (right image) • Other examples

Invariance with Respect to Grey-Level Transformation

Invariance Property:

log-likelihood image is invariant with respect to arbitrary linear transform of the grey scale of the original image

the transformed data and transformed mixture parameters
$$y_n = ax_n + b$$
, $\hat{\mu}_{mn} = a\mu_{mn} + b$, $\hat{\sigma}_{mn} = a\sigma_{mn}$, $\mathbf{y} = T(\mathbf{x})$, $\mathbf{x} \in \mathcal{S}$

can be shown to satisfy the EM iteration equations

$$q(m|\mathbf{y}) = q(m|\mathbf{x}), \quad \mathbf{x} \in \mathcal{S}, \quad \tilde{w}_m = w_m, \quad m \in \mathcal{M}$$

$$F(\mathbf{y}|\tilde{\mu}_m, \tilde{\sigma}_m) = \frac{1}{a^N} F(\mathbf{x}|\mu_m, \sigma_m), \quad \tilde{P}(\mathbf{y}) = \frac{1}{a^N} P(\mathbf{x})$$

and the corresponding log-likelihood values differ only by a constat which is removed by fixing the displayed grey-level interval

$$\log \tilde{P}(\mathbf{y}) = -N \log a + \log P(\mathbf{x}), \quad \mathbf{x} \in \mathcal{S}$$

Computational Details of Texture Evaluation

- log-likelihood image is invariant with respect to linear transforms of the grey scale
- \bullet log-likelihood criterion optimally "fits" the estimated mixture to the data set ${\cal S}$
- ullet \Rightarrow application of the mixture model to the source data ${f x} \in \mathcal{S}$ is justified by the estimation procedure
- $\bullet \Rightarrow$ log-likelihood value is a suitable measure of typicality of data vectors $\mathbf{x} \in \mathcal{S}$
- unlike other fields (e.g. texture modelling, prediction, pattern recognition) the estimated mixture is applied to the "training" data set ${\cal S}$ again
- limited representativeness of the set \mathcal{S} is less relevant since the estimated mixture is not applied to the data not contained in \mathcal{S}

Literatura 1/3

- Dempster A.P., Laird N.M. and Rubin D.B. (1977): Maximum likelihood from incomplete data via the EM algorithm. *J. Roy. Statist. Soc., B*, Vol. 39, pp.I-38.
- Grim J. (1982): On numerical evaluation of maximum likelihood estimates for finite mixtures of distributions. *Kybernetika*, Vol.18, No.3, pp.173-190.
- Grim J., Haindl M. (2002): A discrete mixtures colour texture model. In: Texture 2002. The 2nd International Workshop on Texture Analysis and Synthesis, Copenhagen 2002. (Chantler M. ed.). Heriot-Watt University, Glasgow 2002, pp. 59-62.
- Grim J., Haindl M. (2003): Texture Modelling by Discrete Distribution Mixtures. Computational Statistics and Data Analysis, 41, 3-4, 603-615.

Literatura 2/3

- Haindl M., Grim J., Somol P., Pudil P., Kudo M. (2004): A Gaussian mixture-based colour texture model. In: Proceedings of the 17th IAPR International Conference on Pattern Recognition. IEEE, Los Alamitos 2004, pp. 177-180.
- Haindl M., Grim J., Pudil P., Kudo M. (2005): A Hybrid BTF Model Based on Gaussian Mixtures. In: Proceedings of the 4th International Workshop on Texture Analysis and Synthesis "Texture 2005", Beijing, China, October 2005
- Grim J., Haindl M., Somol P., Pudil P. (2006): "A Subspace approach to texture modelling by using Gaussian mixtures." In: Proc. 18th IAPR International Conference on Pattern Recognition ICPR 2006. (Haralick B., Ho T. K. eds.), IEEE Computer Society, Los Alamitos 2006, pp. 235-238.

Literatura 3/3

- Heath M., Bowyer K. W., Kopans D. et al.: "Current State of the Digital Database for Screening Mammography." In: *Digital Mammography*, Kluwer Academic Publishers, pp. 457–460, 1998. http://marathon.csee.usf.edu/Mammography/Database.html
- McLachlan G.J. and Peel D. (2000): Finite Mixture Models, John Wiley & Sons, New York, Toronto, (2000)
- Schlesinger, M.I. (1968): Relation between learning and self-learning in pattern recognition." (in Russian), *Kibernetika*, (Kiev), No. 2, 81-88.
- Titterington, D.M., Smith, A.F.M., & Makov, U.E. (1985): Statistical analysis of finite mixture distributions. New York: John Wiley & Sons, 1985.

Example 2: Synthesis for Texture "Fabrik"

Synthesis: by random sampling the component means μ_{mC} according to the conditional weights $W_m(\mathbf{x}_D)$

right image: component means replaced by similar pieces of the original texture ("centroids", "micro-tiles") ⇒ stochastic tiling

- source texture image: 512x512 pixels $\Rightarrow |S| = 232000$
- dimension: $N = 30 \times 30 = 900$, number of components: $|\mathcal{M}| = 90$
- number of EM iterations: t = 20

Example 3: Synthesis for Texture "Leather"

Synthesis: by random sampling the component means μ_{mC} according to the conditional weights $W_m(\mathbf{x}_D)$

right image: component means replaced by similar pieces of the original texture ("centroids", "micro-tiles") ⇒ stochastic tiling

- source texture image: 512x512 pixels $\Rightarrow |S| = 242000$
- dimension: N = 20x20 = 400, number of components: $|\mathcal{M}| = 50$
- number of EM iterations: t = 15

Example 5: Irregularity Evaluation - Texture "Cloth"

Idea: integration of the log-likelihood evaluation into the original image by using red spectral component

Principle: red spectral component contains the inverse log-likelihood values (central image) and log-likelihood ratio values (right image) Return

Example 6: Irregularity Evaluation - Texture "Flowers"

Idea: integration of the log-likelihood evaluation into the original image by using red spectral component

Principle: red spectral component contains the inverse log-likelihood values (central image) and log-likelihood ratio values (right image) Return

Example 7: Irregularity Evaluation - Texture "Ratan"

Idea: integration of the log-likelihood evaluation into the original image by using red spectral component

Principle: red spectral component contains the inverse log-likelihood values (central image) and log-likelihood ratio values (right image) Return

