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Local Statistical Texture Model

Assumption:

homogeneous texture, i.e. local statistical properties of pixels in a suitably
chosen search window are shift-invariant

Digitized grey-scale texture: Y = [yij ]
I J
i=1 j=1 , yij ≈ grey-levels

window patch: x = (x1, x2, . . . , xN) ∈ X , X = RN

Method:

approximation of the joint multivariate probability density of window pixels by
normal mixture of product components

P(x) =
∑

m∈M
wmF (x|µm,σm) =

∑
m∈M

wm

∏
n∈N

fn(xn|µmn, σmn)

fn(xn|µmn, σmn) =
1√

2πσmn

exp{− (xn − µmn)
2

2σ2
mn

}

M = {1, . . . ,M}, N = {1, . . . ,N} ≈ index sets
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EM Algorithm for Normal Mixtures

dat set: S = {x(1), . . . , x(K)} ≈ by scanning the image with the search
window

F (x|µm,σm) =
∏
n∈N

1√
(2π)σmn

exp
{
− (xn − µmn)

2

2σ2
mn

}
, m ∈ M

log-likelihood criterion:

L =
1

|S|
∑
x∈S

log P(x) =
1

|S|
∑
x∈S

log[
∑

m∈M
wmF (x|µm,σm)]

EM Algorithm:

q(m|x) =
wmF (x|µm,σm)∑
j∈M wjF (x|µj ,σj)

w
′
m =

1

|S|
∑
x∈S

q(m|x), µ
′
mn =

1∑
x∈S q(m|x)

∑
x∈S

xnq(m|x)

(σ
′
mn)

2 = −(µ
′
mn)

2 +
1∑

x∈S q(m|x)
∑
x∈S

x2
nq(m|x)
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Computational Details of Model Estimation

high dimension of the window space N ≈ 102 − 103

low-frequency details ⇒ large window-size ⇒ high dimension

dimension N ≈ 103 becomes computationally prohibitive

training data set S obtained by scanning the image with the search
window (source texture image: 500x500 pixels ⇒ |S| ≈ 250000)

number of components M ≈ 101 − 102

EM algorithm: random initialization, 10 - 20 iterations

(!) data vectors obtained by scanning the image with the search window
are overlapping and therefore not independent

data set S corresponds only to a “trajectory” in X produced by
scanning the image (⇒ less representative, bad sampling properties)

high-dimensional spaces are “sparse” ⇒ nearly non-overlapping
components, q(m|x) behave nearly binary:

qmax(x) = arg max
m

{q(m|x)}, q̄max =
1

|S|
∑
x∈S

qmax(x) ≈ 0.95 ÷ 0.99
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Sequential Texture Synthesis by Local Prediction

D = {j1, . . . , jl} ⊂ N ≈ defined part of the window
C = {i1, . . . , ik} = N \ D ≈ predicted part of the window

xD = (xj1 , . . . , xjl ) ∈ XD , F (xD |µm,σm) = Πn∈D fn(xn|µmn, σmn)
xC = (xi1 , . . . , xik ) ∈ XC , F (xC |µm,σm) = Πn∈C fn(xn|µmn, σmn)

conditional distribution:

PC |D(xC |xD) =
PCD(xC , xD)

PD(xD)
=

∑
m∈M

Wm(xD)F (xC |µmC ,σmC )

Wm(xD) =
f (m)F (xD |µmD ,σmD)∑
j∈M f (j)F (xD |µjD ,σjD)

PREDICTION: expectation x̄C given xD
x̄C = EC |D{xC |xD} =

∫
xCPC |D(xC |xD)dxC =

∑
m∈M

Wm(xD)µmC

(alternatively: random sampling by Wm(xD))
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Example 1: Synthesis of the Texture “Ratan”

Image Synthesis: by random sampling the component means µmC according
to the conditional weights Wm(xD):

original image component means sampling of means

source texture image: 512x512 pixels ⇒ |S| .
= 233000

dimension: N = 30x30 = 900, number of components: |M| = 80

number of EM iterations: t = 15
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Example 1a: Synthesis of the Texture “Ratan”

“Realistic” Image Synthesis: component means µm replaced by similar
pieces (patches) µ∗

m optimally chosen from the original texture:

original image texture patches sampling of patches

µ∗
m = arg min

x∈S
{‖x − µm‖2}.

Other examples
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Local Evaluation of the Log-Likelihood Values

Motivation:

successful texture synthesis ⇒ the properties of source texture image
can be described locally by the mixture model P(x)

LOG-LIKELIHOOD:
log P(x) ≈ typicality of window patch x → grey-level at centr of x

Remark: log P(x) is highly sensitive to grey-level deviation

LOG-LIKELIHOOD RATIO:
log P(x)/P0(x) ≈ “structural” typicality of window patch x

P0(x) =
∏
n∈N

fn(xn|µ0n, σ0n), µ0n =
1

|S|
∑
x∈S

xn, σ2
0n =

1

|S|
∑
x∈S

x2
n − µ2

0n

Remark: µ0n, σ0n are nearly identical for all n ∈ N
⇒ log P0(x) is nearly invariant to pixel order
⇒ log P(x)/P0(x) is nearly invariant with respect to grey-level deviations
and it is more sensitive to structural irregularities.
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Example 1: Local Evaluation of Texture Image “Ratan”

Principle: log-likelihood values displayed as grey-levels at center pixel of the
search window

original image log-likelihood log-likelihood ratio

Remark: Log-likelihood ratio is less dependent on the grey-level mean and it
is more sensitive to structural differences. The structural irregularities of the
“ratan” texture (cf. left image) are therefore more clearly identified by the
log-likelihood ratio (right image) than by the log-likelihood alone (central
image)
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Example 2: Local Evaluation of Texture Image “Cushion”

Principle: log-likelihood values are displayed as grey-levels at center pixel of
the search window

original image log-likelihood log-likelihood ratio

Remark: Log-likelihood values are highly sensitive to the deviations of grey
levels. So e.g. hardly visible light pixels in the left image produce dark spots
of window size (central image)
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Example 3: Irregularity Evaluation - Texture “Cushion”

Idea: integration of the log-likelihood evaluation into the original image by
using red spectral component

original image L-strangeness LR-strangeness

Principle: red spectral component contains the inverse log-likelihood values
(central image) and log-likelihood ratio values (right image)
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Example 4: Irregularity Evaluation - Texture “Carpet”

Idea: integration of the log-likelihood evaluation into the original image by
using red spectral component

original image L-strangeness LR-strangeness

Principle: red spectral component contains the inverse log-likelihood values
(central image) and log-likelihood ratio values (right image) Other examples
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Invariance with Respect to Grey-Level Transformation

Invariance Property:

log-likelihood image is invariant with respect to arbitrary linear transform of
the grey scale of the original image

the transformed data and transformed mixture parameters
yn = axn + b, µ̃mn = aµmn + b, σ̃mn = aσmn, y = T (x), x ∈ S

can be shown to satisfy the EM iteration equations

q(m|y) = q(m|x), x ∈ S, w̃m = wm, m ∈ M

F (y|µ̃m, σ̃m) =
1

aN
F (x|µm,σm), P̃(y) =

1

aN
P(x)

and the corresponding log-likelihood values differ only by a constat which is
removed by fixing the displayed grey-level interval

log P̃(y) = −N log a + log P(x), x ∈ S
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Computational Details of Texture Evaluation

log-likelihood image is invariant with respect to linear transforms of the
grey scale

log-likelihood criterion optimally “fits” the estimated mixture to the data
set S
⇒ application of the mixture model to the source data x ∈ S is justified
by the estimation procedure

⇒ log-likelihood value is a suitable measure of typicality of data vectors
x ∈ S
unlike other fields (e.g. texture modelling, prediction, pattern
recognition) the estimated mixture is applied to the “training” data set
S again

limited representativeness of the set S is less relevant since the
estimated mixture is not applied to the data not contained in S
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Example 2: Synthesis for Texture “Fabrik”

Synthesis: by random sampling the component means µmC according to the
conditional weights Wm(xD)

original image sampling of means “centroid” sampling

right image: component means replaced by similar pieces of the original
texture (“centroids”,“micro-tiles”) ⇒ stochastic tiling

source texture image: 512x512 pixels ⇒ |S| .
= 232000

dimension: N = 30x30 = 900, number of components: |M| = 90

number of EM iterations: t = 20

Return
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Example 3: Synthesis for Texture “Leather”

Synthesis: by random sampling the component means µmC according to the
conditional weights Wm(xD)

original image sampling of means “centroid” sampling

right image: component means replaced by similar pieces of the original
texture (“centroids”,“micro-tiles”) ⇒ stochastic tiling

source texture image: 512x512 pixels ⇒ |S| .
= 242000

dimension: N = 20x20 = 400, number of components: |M| = 50

number of EM iterations: t = 15

Return
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Example 5: Irregularity Evaluation - Texture “Cloth”

Idea: integration of the log-likelihood evaluation into the original image by
using red spectral component

original image L-strangeness LR-strangeness

Principle: red spectral component contains the inverse log-likelihood values
(central image) and log-likelihood ratio values (right image) Return



Mixture Model Local Evaluation Likelihood Examples Computational Aspects

Example 6: Irregularity Evaluation - Texture “Flowers”

Idea: integration of the log-likelihood evaluation into the original image by
using red spectral component

original image L-strangeness LR-strangeness

Principle: red spectral component contains the inverse log-likelihood values
(central image) and log-likelihood ratio values (right image) Return
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Example 7: Irregularity Evaluation - Texture “Ratan”

Idea: integration of the log-likelihood evaluation into the original image by
using red spectral component

original image L-strangeness LR-strangeness

Principle: red spectral component contains the inverse log-likelihood values
(central image) and log-likelihood ratio values (right image) Return


